

# Towards energy communities in Preiļi municipality

Ieva Pakere, Energy expert Ārijs Vucāns, The head of the municipality



### Fields of expertise



#### Dr. sc. ing. leva Pakere

- PhD in Environmental Engineering and Energy
- Associate professor at Riga Technical University
- Author of more than 50 scientific publications related to *district heating, renewable energy, smart energy systems...*
- Certified energy auditor, energy efficiency expert
- Experience in cooperation with Municipalities, Ministries and Companies
- Resident of Preili Municipality

nd Energy University blications related to gy, smart energy systems... iency expert icipalities. Ministries and



## Preiļi Municipality

16 660









### **NUMBER OF INHABITANTS**

#### **TOTAL AREA** 1413,13 km<sup>2</sup>

#### **NUMBER OF ENTERPRISES**

- 1038 enterprises
- from them 540 agricultural

# **Energy and climate ambitions**

#### Sustainable Energy and Climate Action Plan 2030 (SECAP) of Preili Municipality

- Approved in June 2022
- The set goals are in line with the Preili Municipality Development Program 2022-2029
- Developed in cooperation with Ltd. Ekodoma

#### Vision: Reach carbon-neutral Preili Municipality in 2050





Preilu novada ilgtspējīgas enerģētikas un klimata rīcības plāns līdz 2030. gadam





# **SECAP targets for 2030**

Reduce energy consumption in municipal infrastructure

• More than 6000 MWh of annual energy savings

To achieve maximum efficiency in district heat supply and to increase renewable electricity production

- More than 11 000 MWh produced RES electricity per year
- 764 tones reduced CO<sub>2</sub> emissions

Ensure that households can afford the necessary energy resources for a comfortable life

• More than 200 thousand EUR savings

Climate-resistant Preili Municipality

• Improved infrastructure

#### Preilu novada ilgtspējīgas enerģētikas un klimata rīcības plāns līdz 2030. gadam





### **Baseline in Preiļi Municipality**



#### **Energy consumption**

#### Main energy consumers in Municipality





#### CO<sub>2</sub> emissions



### **Towards energy communities**

Energy efficiency Renewable energy integration

#### Energy Communities





# **Energy efficiency in buildings**

**Best practice examples** 









## **Renovation of sport school**

- Building with sports halls;
- A total area of 1920 m<sup>2</sup>;
- Built in 1985.
- One of the most serious problems was insufficient supply of heat;
- Renovation was done from June 2021 to September 9, 2022;
- Total renovations costs 1.66 million EUR, 40% co-funded by ERDF;
- 2nd place in the nomination "Most Energy-Efficient Public Building in Latvia 2023"



was insufficient supply of heat; 021 to September 9, 2022; n EUR, 40% co-funded by ERDF; t Energy-Efficient Public Building











# Achieved energy savings

Main renovation activities:

- insulation of the building's external walls, roof and floor;
- renovation of the internal heating system,
- creation of a ventilation system,
- installation of solar batteries 25 kW capacity
- installation of ground source and air source heat pumps- 93 + 30 kW capacity



Electricity consumption, MWh Heat consumption, MWh



#### $\bullet \bullet \bullet \bullet \bullet$

### Solar energy production



#### Total CO<sub>2</sub> savings: **74 tones CO<sub>2</sub> per year**

### **Renovation of Culture center**

- Building for cultural events;
- A total area of 1558 m<sup>2</sup>;
- Built in 1956.
- Renovation was done from spring 2022 to summer 2023;
- Total renovations costs 1.66 million EUR, 40% co-funded by ERDF;
- Main renovation activities:
  - insulation of the building's walls, roof and floor;
  - renovation of a ventilation system,
  - change of internal lighting
  - installation of solar batteries 20 kW capacity









# **Achieved energy savings**



Total CO<sub>2</sub> savings\*: 9.5 tones CO<sub>2</sub> per year

\*Planned



Power from grid





#### **Transport electrification**



### **Use of electric cars**

Total car park - 37 passenger cars; - 18 buses

**Electric cars** - 2 passenger cars; - 1 buss (2 planned)





**Charging infrastructure** - Two 11 kW charging stations; - 80 kW charging station (2 planned);



### Installation of RES in industry









# **RES in the largest industrial site**

- Ltd. «Preilu siers» one of largest milk processing plants in Latvia located in Preili city;
- Produces around 10,000 tones of cheese every year;
- Since 2015 uses mainly wood chips for heat production;
- In 2021 solar PV plant project realised:
  - Located on the roof of a wood chip warehouse;
  - Installed capacity of 155 kW;
  - All produced solar electricity is **used in the plant** for milk processing • Total CO<sub>2</sub> savings: **16 tones CO<sub>2</sub> per year**

### **Upcoming large-scale RES projects**



### Preiļi Municipality – place for large-scale wind park?



**ENERY PRĪKUĻI WIND PARK** 

turbines



477 GWh of Up to 24 wind generated electricity



### **Development stage**

#### ENERY PRĪKUĻI WIND PARK DEVELOPMENT





## Conclusions

- Currently, there are no energy communities in Preili Municipality.
- The municipality is steadily improving energy efficiency in buildings and infrastructure.
- Solar PV panels are being installed on more buildings.
- Excess solar electricity is fed into the grid but could be utilized for future energy communities.
- Expanding the integration of solar stations with electric vehicle charging offers growth potential.
- Collaboration with large-scale wind project developers could bring benefits to local residents

